
Copyright is held by the author / owner(s).
SIGGRAPH 2012, Los Angeles, California, August 5 – 9, 2012.
ISBN 978-1-4503-1435-0/12/0008

Unity: iOS and Android - Cross Platform Challenges and Solutions

Renaldas Zioma
Unity Technologies
rej@unity3d.com

Aras Pranckevičius
Unity Technologies
aras@unity3d.com

1. Introduction

Unity powers more than a thousand different titles on mobile
platforms. One of the main strengths of Unity is the ability to
efficiently support a very wide range of mobile devices starting
from low-end Android devices running on ARMv6 CPUs with
GLES1.1 level GPUs to iPad3, and across 5 different GPU
architectures.

In this talk we will share our experience harnessing distinct
GPU architectures and lessons learned to maintain an
acceptable quality and performance level across multiple
devices and operating systems.

2. Elaboration

At present several different GPU architectures are flourishing
in the mobile space. Almost every architecture introduces its
own texture compression scheme, a set of API extensions,
performance analysis tools, and different bugs in graphical
drivers.

2.1 Graphical test suite on mobiles

We have adopted a graphics functional test suite for automated
testing on mobile platforms. There are a number of gotchas we
learned in the process of finding the suitable devices and
achieving reproducible results.

2.2 Cross platform shaders

Unity can deploy not only to mobile platforms, but to desktops
and web as well. Cg is used as the main cross platform shading
language. The cross compilation step is employed to generate a
platform specific shader in the HLSL, GLSL or GLSL ES
language. An additional optimization step was developed to
help the platform driver in achieving the best performance.

2.3 Efficient dynamic geometry submission

The combination of certain API extensions, driver bugs and
GPU architectures calls for several practical approaches when
submitting dynamic geometry depending on the mobile
platform. Currently we employ the following approaches:
• vertex buffer “orphaning”
• double/triple buffering
• queue of preallocated buffers and
• rendering directly from system memory.
We will compare the performance of different approaches on a
set of widely used mobile devices and explain why the
performance differs so drastically.

2.4 Measuring GPU performance

We will present several “poor-man” approaches for coarse
GPU profiling we developed so far for platforms which lack
related tools (such as iOS) and overview our experience
integrating extensions suitable for GPU profiling directly into
the engine, when available.

2.5 Dealing with broken paths in drivers

We will share our experience dealing with driver pitfalls on
certain platforms and propose workarounds.

2.6 Different texture compressions

We will give a short overview of the different texture
compression schemes, their pros and cons, overview available
compression libraries and explain why we chose certain
approaches ourselves.

2.7 Skinning on CPU

We will present the performance results and explain why we
choose to implement skinning on the CPU using VFP or
NEON instructions instead of the GPU approach.

2.8 Optimizing shaders and post-process
effects

We will present a number of approaches we use to profile and
optimize shaders and full screen post-process effects on a
variety of mobile platforms.

3. Conclusions

Cross platform challenges and lessons learned while
developing genre agnostic technology suitable for a very wide
range of devices can be applied by mobile developers working
on their custom game engines and can foster further
discussions in the field of driver stability and profiling tools on
mobile platforms.

mailto:rej@unity3d.com
mailto:rej@unity3d.com
mailto:rej@unity3d.com
mailto:rej@unity3d.com

